ODM Tools Python: Open Source Software for Managing Hydrologic and Water Quality Time Series Data

Jeffery S. Horsburgh

Stephanie Reeder
James Patton
Amber Spackman-Jones

Motivation

Gradients Along Mountain To Urban Transitions (GAMUT) Network

- Ecohydrologic observatory deployed in 3 watersheds: Logan River, Red Butte Creek, Provo River
- Watersheds with similar water source (high elevation snow) but different land use transitions
- Measures aspects of water inputs and outputs and water quality over mountain-to-urban gradient
- Mix of aquatic and terrestrial in situ and relocatable sensors

Motivation

Some History

- ODM Tools originally develoed as part of the CUAHSI Hydrologic Information System
- Developed in Microsoft Visual Studio .Net
- Limited to Windows Machines
- Only worked with Microsoft SQL Server databases
- Provided editing tools, but did not preserve the history of edits

Observations Data Model

ODM Tools Python: Design Goals

- Muti-platform support (Windows, Linux, Mac)
- Multi-database support (Microsoft SQL Server and MySQL)
- Implement a scripting interface to save the provenance of data edits in QC process
- Modernize the Graphical User Interface (GUI)

Architecture

Graphical User Interface

Dockable Windows

						-	1227		
ValueID	DataValue	Val	LocalDateTime	UT	DateTimeUTC	Sit	/a	Of	0
8607706	4.00045970149		2008-07-02 07:30:00	-7.0	2008-07-02 14:30:00	1	32		
8615287	4.25681459701		2008-07-01 07:30:00	-7.0	2008-07-01 14:30:00	1	32		
8616334	4.23571177612		2008-07-02 05:30:00	-7.0	2008-07-02 12:30:00	1	32		
8619129	4.33288192537		2008-07-02 01:30:00	-7.0	2008-07-02 08:30:00	1	32		
8619782	4.4006091194		2008-07-02 03:00:00	-7.0	2008-07-02 10:00:00	1	32		
8619818	4.4100449403		2008-07-01 05:00:00	-7.0	2008-07-01 12:00:00	1	32		
8620012	4.36762985075		2008-07-02 03:30:00	-7.0	2008-07-02 10:30:00	1	32		
8620220	3.83081343284		2008-07-02 08:00:00	-7.0	2008-07-02 15:00:00	1	32		
8622377	3.89308523881		2008-07-02 06:30:00	-7.0	2008-07-02 13:30:00	1	32		
8622441	4.49635820896		2008-07-01 04:30:00	-7.0	2008-07-01 11:30:00	1	32		
8625349	4.58550746269		2008-07-02 00:30:00	-7.0	2008-07-02 07:30:00	1	32		
8625395	4.59515373134		2008-07-02 00:00:00	-7.0	2008-07-02 07:00:00	1	32		
8625705	4.2038311791		2008-06-25 06:30:00	-7.0	2008-06-25 13:30:00	1	32		
8626475	4.62864941791		2008-07-03 04:30:00	-7.0	2008-07-03 11:30:00	1	32		
8627214	4.66996268657		2008-07-03 04:00:00	-7.0	2008-07-03 11:00:00	1	32		
8627341	4.66188076119		2008-07-03 02:00:00	-7.0	2008-07-03 09:00:00	1	32		
8628198	4.28373167164		2008-07-01 05:30:00	-7.0	2008-07-01 12:30:00	1	32		
8630093	4.78889435821		2008-07-02 10:00:00	-7.0	2008-07-02 17:00:00	1	32		
8630222	4.37667031343		2008-07-02 04:30:00	-7.0	2008-07-02 11:30:00	1	32		
8634141	4.93983449254		2008-06-30 07:30:00	-7.0	2008-06-30 14:30:00	1	32		
8634276	4.48706534328		2008-06-25 05:00:00	-7.0	2008-06-25 12:00:00	1	32		
			m						

erie	s Selector								×
D) A	dl .	⊕ Sim	ole Filter 🦱 Advan	ced Filter					
	SeriesID	SiteID	SiteCode	SiteName	Variabl	VariableCode	VariableName	Speciation	Variab
	12	1	USU-LBR-Mendon	Little Bear River at Me	13	USU13	Gage height	Not Applicable	48 -
	13	1	USU-LBR-Mendon	Little Bear River at Me	13	USU13	Gage height	Not Applicable	48
	14	1	USU-LBR-Mendon	Little Bear River at Me	13	USU13	Gage height	Not Applicable	48
V	15	1	USU-LBR-Mendon	Little Bear River at Me	32	USU32	Oxygen, dissolved	Not Applicable	19
	16	1	USU-LBR-Mendon	Little Bear River at Me	32	USU32	Oxygen, dissolved	Not Applicable	19
	17	1	USU-LBR-Mendon	Little Bear River at Me	33	USU33	Oxygen, dissolved per	Not Applicable	1
	18	1	USU-LBR-Mendon	Little Bear River at Me	34	USU34	Specific conductance	Not Applicable	19 +
1			III						+

Data Visualization

Data Visualization: Plot Types

Query and Export

Data Editing for Quality Control

Data Editing for Quality Control

How does it work?

Step 1: Select a Time Series for Editing

Step 2: Select Data to Edit

Step 3: Linear Drift Correction

Step 4: Interpolate

Step 5: Flag

Step 6: Save Modified Data Series

Recording Edits

Ultimate Objective

 Transform raw sensor data to quality controlled data in a repeatable way

Summary

- ODM Tools Python is a cross platform (Windows, Mac) software for sensor data management
- Visualization capabilities are helpful in screening new data as they arrive
- ODM Tools provides GUI-based and scripting of data quality control edits

This project is funded by National Science Foundation grant EPS-1208732.

NSF

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Questions?

OPEN SOURCE CODE REPOSITORY:

ODM Tools Python is available in GitHUB

https://github.com/UCHIC/ODMToolsPython

